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Optimizations in target enrichment and bioinformatics enable 
sensitive detection of copy number variations in targeted NGS
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Introduction

Copy number variations (CNVs) account for a significant 
proportion of variation in the human genome1. CNVs 
are also known to play a significant role in a variety of 
diseases, contributing up to 20% of mutations associated 
with hereditary cancer in certain populations2,3. However, 
their detection in targeted next generation sequencing 
(NGS) assays has been historically challenging4,5. 
Here, we report on our multifaceted approach for the 
detection of CNVs (deletions and duplications) in our 
30-gene NGS-based test for hereditary cancer risk (the 
Color Hereditary Cancer Test). We were able to boost 
detection sensitivity by performing optimizations at 
multiple levels, which resulted in identification of novel 
CNVs in virtually all of the genes in our breast/ovarian 
and hereditary cancer panel. 

Conclusions

•	 NGS has the potential of highly sensitive CNV 
detection, and allows the structural variant to 
be accurately characterized.

•	 CNV detection based on read depth 
requires coverage normalization correction 
for systematic biases, as well as multiple 
segmentation methods targeting different CNV 
sizes.

•	 The highest sensitivity is achieved by targeting 
CNV breakpoints during sequencing, combined 
with dedicated algorithms relying on split read 
and paired read signals. This approach allows 
detection of deletions and duplications based 
on a minimum of 3 supporting reads.

•	 While the clinical relevance of CNVs in BRCA1, 
BRCA2 and the Lynch syndrome genes3 has 
been well established, data on other genes 
associated with hereditary cancer is scarce. 
Here, we identified CNVs in CHEK2 (n=42, 
13 distinct CNVs), ATM (n=31, 12 distinct), 
RAD51C (n=22, 10 distinct) and PALB2 (n=16, 10 
distinct).
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Results

Figure 1C. Bioinformatics Pipeline

Left: Sequential steps from alignment to 
confirmation of structural variants. Right: 
Optimizations for CNV detection based 
on read depth, including a normalization 
step comprised of in-house and CNVkit 
derived elements. Top right: Example of 
noise reduction; top track shows raw data 
and bottom track shows normalized signal, 
emphasizing a 5-kb deletion of BRCA1 
exon 13. Both publicly available algorithms 
(BWA6, LUMPY7 and CNVkit8), and in-house 
developed algorithms (outlined in teal) are 
used in our pipeline.

Figure 2. CNVs by gene

Color has identified CNVs in >350 clinical samples to 
date that were classified as P, LP or VUS, representing 
approximately 220 distinct variations. In accordance with 
previous findings2,9, the frequency of CNVs is much lower 
in BRCA2 compared to BRCA1, which accounts for almost 
30% of all CNVs. GREM1 was only analyzed for duplications 
overlapping its enhancer region, revealing 9 distinct events.

Figure 3. CNVs by type

Due to the optimizations outlined in figure 1, our assay can 
detect CNVs of all sizes. Almost 30% of our reported CNVs 
impacted only a single exon, including 13 in BRCA1. Our split-
read detection algorithm has detected 17 variants between 
50-250 base pairs, a size range known to be difficult in most 
NGS assays.

Figure 4. CNVs identified in BRCA1

The pluriformity of CNVs was analyzed in detail in the subcohort of 101 CNVs in BRCA1. While read 
depth analysis may call replicates with slightly different boundaries, CNVs with both breakpoints 
differing by less than 1,000bp were considered identical. This resulted in at least 57 distinct 
CNVs, for which breakpoints frequently colocalized with Alu repeats2 (grey track) and segmental 
duplications in BRCA1 exons 1-2 and the upstream gene NBR2 (light blue track). Out of the 15 
duplications detected in BRCA1, 12 were confirmed to be in tandem (hatched boxes indicate that 
breakpoints have not been resolved). This knowledge is required to predict the RNA sequence, 
which guides variant classification. 

Figure 1A. NGS features used for CNV calling

In this example, a deletion (yellow) reduces the read depth, increases the 
distance between paired-end reads (when mapped to the reference), and 
causes portions of reads to map to different locations of the reference, a 
phenomenon referred to as split reads.

Figure 1B. Optimization of Probe Design

In order to maximize detection sensitivity, the assay is designed to use 
capture probes that target both coding exons as well as intronic regions 
known to harbor structural rearrangements. In this way, we can capture 
the signals that can be derived from CNV breakpoints (Figure 1A).
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Figure 1D. Secondary confirmation strategies

Overview of typical strategies for confirmation of CNVs with known 
breakpoints by Sanger sequencing. Broken arrows represent primers, ‘X’ 
indicates no PCR product, yellow indicates deleted sequence, and blue 
represents duplicated sequence. 
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