
Figure 1: Predictive power of call-dependent and site-dependent signals.

Top: The values of the two strongest features associated with the call: allele frequency (AF) and call quality 
(QUAL), in all instances in the dataset. Instances marked in green are NGS calls that were confirmed with Sanger, 
and red ones are cases that did not confirm.

Bottom: The values of the two strongest features associated with the site: GC content in the 50 positions around 
the variant (GC 50) and weighted homopolymer rate (WHR).
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Introduction

Confirmation of next-generation sequencing (NGS) results by an alternative 
technology, such as Sanger sequencing, is currently recommended for all 
clinical tests in order to prevent false positive calls. Secondary confirmation 
adds significant time and cost, and impacts turn-around times and patient 
care. However, recent findings by Beck et al. [1] and Baudhuin et al. [2] 
indicate that the quality of modern NGS assays is on par with Sanger 
sequencing, and that there is limited utility in using it for confirmation. In 
addition, studies by Strom et al. [3] and Mu et al. [4] have demonstrated 
that the need for Sanger confirmation can be reduced by restricting it 
to low-quality variant calls, although the use of a single quality value to 
determine the quality of the call cannot rule out the need for confirmation. 
The analysis described here assesses the technical feasibility of combining 
multiple quality signals of a variant call using machine learning to reliably 
identify variant calls of high confidence, that are therefore expected to 
confirm.

Similarly to previous observations on similar datasets [3, 4], we found that setting a threshold on 
a single quality score is insufficient for distinguishing high confidence from low confidence calls. 
Although some signals are more indicative than others, a combination is required to achieve a 
high-confidence model. A benefit of the features used in the developed model is their availability: 
the signals are directly accessible in the output of alignment (e.g., read depth), variant calling (e.g., 
quality scores), or can be computed directly from the reference genome (e.g., GC content). There 
are no secondary models required, and similar models can be developed for any sequencing assay 
in a straightforward fashion.

An examination of the features shows that call-specific signals (such as allele frequency and 
call quality) are more predictive than site-specific signals (such as GC content and presence 
of homopolymers): a breakdown for several features is shown in Figure 1. The top features that 
are most predictive of the quality of the call are the allele fraction, mapping quality, depth, call 
quality, and GC content; using just these features, a model that achieves over 96% accuracy can be 
constructed, but its false positive prediction rate is not 0%.

Methods

A set of 5,318 Single Nucleotide Variants (SNVs) and Indels was detected 
by the Color Test, a 30-gene panel NGS genetic test for hereditary 
cancer risk [5], and subsequently re-assessed by Sanger sequencing. The 
bioinformatics analysis pipeline aligned reads against GRCh37.p12 with the 
Burrows-Wheeler Aligner [BWA-MEM], and called variants using the GATK3 
HaplotypeCaller module. Coverage requirements for variant calling were a 
minimum of 20 unique reads (20X) for each base of the reportable range, 
and at least 50X for 99% for the reportable range. Median coverage was in 
the 200-300X range. All variants included in this analysis were classified 
according to ACMG guidelines as VUS, likely pathogenic, or pathogenic.

For each variant, multiple quality signals of the call and of the genomic 
position were collected; the features are summarized in Table 1. The 
data were then used to train a logistic regression model that estimates 
the probability that a given variant called as detected by NGS will 
subsequently be confirmed as present using Sanger sequencing.

Results

In our context, a false positive prediction is a variant detected by NGS 
that was predicted to be high-quality, but was not detected by Sanger 
sequencing. A false negative prediction is an NGS variant that was 
predicted to require Sanger confirmation due to its low-quality, but for 
which the Sanger actually identified the variant as present. With the task 
at hand, false positive predictions are significantly more costly than false 
negative predictions: while a false negative introduces some delay to 
completing the analysis, a false positive can lead to an incorrect result 
reported to a patient, if Sanger sequencing was not used to test and 
remove the low-quality NGS variant. As such, our model was tuned to 
eliminate false positive predictions. Using 10-fold cross-validation, the 
model achieved 99.1% accuracy (95% confidence interval: +/- 0.6%), see 
Figure 2. More importantly a 0% false positive prediction rate; a confusion 
matrix is shown in Table 2.

*Color continues to use secondary confirmation of all clinically significant variants.

The rate of low confidence variants that were confirmed by Sanger sequencing was low (17%). 
However, we wanted to understand the reason for the low-quality score estimated by the model 
in these cases. We examined the subset of variants that the model predicts as low-quality ones 
requiring confirmation, and that were confirmed using Sanger sequencing. Over half of these 
variants were called in less than 30% of the NGS reads; other recurring variant types in this set 
included those occurring in regions that are typically difficult for NGS sequencing, i.e. having high 
GC content or in close proximity to long homopolymers. An example of such a variant is shown 
in Figure 3. In these cases, although the model determined the call to be of low quality, the NGS 
assay was actually accurate in its calls, further strengthening the observations in [1-4].
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Relevant sequence characteristics and quality signals in the variant confidence model

Performance of the variant confidence model vs Sanger sequencing

Table 1: Features used in the logistic regression model.

Figure 3: An example of a false negative prediction: the pathogenic variant ‘MSH2, c.942+3A>T’ is challenging to 
detect in NGS due to the presence of a long homopolymer. Too stringent filtering would reduce the sensitivity to 
call such variants.
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Conclusions

Our results demonstrate that a model defining the quality of NGS 
calls using features of the call site and the sequencing process 
can be effective in identifying high-confidence variants for which 
confirmation is not necessary. This approach can help to differentiate 
real variants from potential noise in many high-throughput NGS 
workflows as well as reduce cost and TAT of NGS based clinical tests.

Feature Description Value range
(5th-95th percentile, median)

DP NGS read depth at the variant position. 91-433 (233.5)

AD Number of reads that support the variant call. 31-390 (113)

AF Fraction of reads that support the variant call, i.e. AD / DP. 0.23-0.56 (0.48)

GC @ 5, 20, 50 Fraction of GC content in the 5, 20, and 50 bases around the 
variant position.

0.18-0.72 (0.45)
0.29-0.69 (0.44)
0.30-0.67 (0.42)

MQ Root Mean Square of the mapping quality of the call. 59.4-60 (60)

GQ Genotype Quality of the call. 50-99 (99)

WHR Weighted Homopolymer Rate in a window of 20 bases around 
the variant position: the sum of squares of the homopolymer 
lengths, divided by the number of homopolymers.

1.7-4.2 (2.4)

HPL-D Distance to the longest homopolymer within 20 bases from the 
call position.

0-15 (5)

HPL-L Length of the longest homopolymer within 20 bases from the call 
position.

2-6 (4)

QUAL Quality score assigned by the variant caller to the call. 416-5448 (2675)

QD QUAL, normalized by DP. 2.7-16.9 (11.2)

FS Phred-scaled p-value using Fisher’s exact test, to detect strand 
bias.

0-7.6 (1.5)

Table 2: A breakdown of the performance of the 
prediction model on the subset of variants confirmed 
with Sanger (“Present”) and the subset of variant not 
confirmed (“Not Present”).

Present Not Present

High 
confidence 
variant

5031 / 5031 (100.0%)

True positive 

prediction

0 / 5031 (0%)

False positive 

prediction

Low 
confidence 
variant

49 / 287 (17.1%)

False negative 

prediction

238 / 287 (82.9%)

True negative 

prediction

Figure 2: ROC Curve for the variant confidence 
model, showing an Area Under the Curve (AUC) 
of almost 1.
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