
Conclusions 
  

• LEAP is a variant interpretation tool that combines multiple categories of evidence for 
variant interpretation and significantly improves model performance (AUROC 97.9%) 
compared with algorithms using computational features only 
• LEAP is extensible to multiple cancer loss-of-function genes, particularly those with high 
penetrance, demonstrating strong performance (AUROC 97.5%) even when a gene of 
interest is withheld from the training set 
• Patient-level features like pedigree and co-variant information did not significantly 
improve overall AUC, but improved precision (positive predictive value) and recall 
(sensitivity) 

Next Steps 
  

Improvements: LEAP was trained using logistic regression, which provides visibility into 
individual evidence contribution to a given variant pathogenicity prediction, but 
represents contribution in a linear fashion. Alternatively, a non-linear (trees-based) 
approach could capture more nuanced patterns and provide more hierarchical rationale 
for a prediction, similar to that from a variant scientist's thought process. Additionally, a 
more comprehensive feature set could be utilized (ClinVar consensus, literature content), 
and feature processing could be improved with more sophisticated missing value 
imputation (kNN). 
Extensibility: Gene holdout cross-validation results show extensibility of the model to 
multiple loss-of-function genes for cancer. Extensibility to other health conditions, such as 
cardiovascular disease, has not been investigated. These conditions are less well 
understood than cancer, but as genetics starts to play a larger role, machine learning can 
serve as a tool to generate new criteria and increase efficiency in the variant interpretation 
process.
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Introduction 
   
The American College of Medical Genetics and Genomics (ACMG) guidelines [1] provide an 
important framework for weighing and combining evidence in the clinical interpretation of 
variants. However, for some classes of variants—such as rare missenses, which are the 
majority of sequence variants—evidence can be limited or conflicting. For these variants, 
additional refinements to the guidelines have been proposed [2], and in some cases 
guidelines were found to be inconsistent with data [3]. 

Here, we present LEAP (Learning from Evidence to Assess Pathogenicity), a data-driven 
approach to combining evidence for variant interpretation using machine learning. LEAP 
produces transparent and evidence-based recommendations for the clinical interpretation 
of a variant, and is highly concordant with interpretation as performed by board-certified 
geneticists. We evaluate the predictive power of LEAP at different levels of evidence, and 
discuss its utility as an aid in the clinical interpretation process. 

LEAP is novel in several ways. First, it is constructed and can be updated in a fully 
automated manner, and improves in accuracy as more data is available. Second, LEAP 
combines information commonly used in computational variant interpretation, such as 
functional prediction or conservation scores, with other evidence, such as population 
frequency, splicing impact, phenotypic information, and co-occurring variants. Lastly, in 
addition to high accuracy, the output is easy to understand as LEAP provides visualizations 
of individual evidence contribution to its recommendations.

Methods 
   

Model: An L2-regularized logistic regression model was trained using Python’s “scikit-
learn” library to output a predicted probability of pathogenicity for each variant (hereby 
referred to as predictions), which is used to derive an expected classification. Model 
weights and observed feature values were multiplied to determine the relative contribution 
of individual inputs (pathogenic vs. benign drivers) toward a recommendation for a given 
variant. Separately, a random forest classifier with 1,000 trees was trained and used to rank 
features in order of overall predictive importance. 

Variants and Labels: A set of 2,563 rare (gnomAD MAF < 0.1%) missense variants classified 
as pathogenic (P, LP) or benign (B, LB) were used to train the model. Variants of uncertain 
significance (VUS) were excluded. Variants were detected by an NGS hereditary cancer 
panel in 24 loss-of-function cancer genes in which pathogenic variants have been 
associated with elevated risk for hereditary breast, ovarian, uterine/endometrial, colorectal, 
melanoma, pancreatic, prostate, and stomach cancer. These genes are APC, ATM, BAP1, 
BARD1, BMPR1A, BRCA1, BRCA2, BRIP1, CDH1, CDKN2A, CHEK2, MLH1, MSH2, MSH6, 
MUTYH, NBN, PALB2, PMS2, PTEN, RAD51C, RAD51D, SMAD4, STK11, and TP53. Variant 
classifications used as training labels were determined according to the ACMG 2015 
guidelines for sequence variant interpretation [1], and approved by an American Board of 
Medical Genetics and Genomics certified medical geneticist. 

Features: Quantitative and qualitative evidence considered during variant interpretation 
was used as model inputs. Evidence categories include functional predictions, evolutionary 
conservation scores, population and subpopulation variant frequencies, splicing impact, 
protein domain, pedigree phenotype, and co-variant information, as detailed in Table 1. 
Numeric features were standardized by centering at the median and scaling to the 
interquartile range. Categorical features were binarized, and pedigree and co-variant 
information were aggregated at a variant level. Missing values were filled using the most 
frequent value for numeric features, or filled with a “missing” label for categorical features. 

Validation: Model performance as measured by area under the receiver operating 
characteristic curve (AUROC) was assessed using 10-fold cross-validated predictions. 
Performance of the model across different genes was also assessed using gene holdout 
cross-validated predictions, which were obtained for variants for each gene withheld from 
model training. Predictions from REVEL [4], a meta-predictor based on functional and 
conservation scores for rare missense pathogenicity prediction, were evaluated on the 
same validation set for AUROC comparison. 

Results

Table 1: Variant evidence inputs and significance

Feature inputs in order of overall significance. Order was determined by a random forest feature 
importance ranking which minimizes Gini impurity and optimizes for the highest quality (purest) 
decision tree splits.

Figure 1: 10-fold cross-validation with varying levels of evidence

LEAP performance was assessed based on AUROC on 10-fold cross-validated predictions from 
models trained with different levels of evidence. Evidence categories include 
“computational” (functional prediction and conservation scores), “MAF” (population allele 
frequency), and “patient” (pedigree and co-variant data). LEAP trained with “computational 
only” evidence shows improved performance over REVEL (95.6% vs. 94.3%). The addition of 
population frequency and patient features further improves AUROC (97.9%). 

Figure 2: Model output visualization for use in a clinical setting

Visualization and explanation of model recommendations are shown as an aid for variant scientists 
during variant interpretation for clinical reporting. Contributing evidence features are ordered 
based on overall significance, and contribution magnitude and direction (pathogenic vs. benign 
driver) are displayed and color coded. Numeric feature percentiles with respect to the distribution 
observed in the training set are also shown for comparison. As additional context, classifications for 
similar variants (based on gene, chromosome, and exon) are listed. 

Figure 3: Holdout cross-validation on loss-of-function cancer genes

AUROC breakdown by gene shows higher performance in genes with higher penetrance for 
cancer. Gene holdout cross-validated predictions achieved AUROC of 97.5% (compared with 
97.9% with 10-fold cross-validated predictions). The weighted average across genes was 85.3%.

Category Source Description

Functional predictor Polyphen2-HVAR Structural and functional impact 
prediction at amino acid level

Conservation LRT Amino acid constraint likelihood 
ratio test

Functional predictor SIFT Structural and functional impact 
prediction at amino acid level

Conservation phastCons100way Probability that nucleotide 
belongs to a conserved element

Conservation GERP++

Rejected Substitution (RS) score 
compares observed substitutions 
across species with expected at 

random

Domain Gene Gene annotation

Population frequency gnomAD

Summary data for African, 
Ashkenazi Jewish, East Asian, 

Finnish European, Latino, 
Non-Finnish European, and 

South Asian populations

Splicing impact Skippy
Splicing impact prediction 

algorithm for exonic variants, 
enhancer and silencer elements

Domain dbNSFP Interpro Domain or conserved site of 
variant

Functional predictor MutationTaster2 Structural and functional impact 
prediction at nucleotide level

Splicing impact Alamut 4 RNA canonical sequences 
splicing impact predictions

Patient information Color co-variant data Variant co-occurrence with a 
known pathogenic variant

Patient information Color health history data Personal and family health 
history of various cancers
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Validation Set Precision 
TP/(TP+FP)

Recall 
TP/(TP+FN)

TP FP FN TN

LEAP 
(computational + MAF + patient) 0.844 0.812 151 28 35 2349

LEAP 
(computational + MAF)

0.825 0.785 146 31 40 2346

LEAP 
(computational only) 0.627 0.704 131 78 55 2299

REVEL 
(computational only)

0.331 0.849 158 320 28 2057

Table 2: Precision and recall for models with varying levels of evidence

True positive (TP), false positive (FP), false negative (FN), and true negative (TN) counts were 
determined using a 0.5 prediction cutoff for all model predictions. 10-fold cross-validated 
predictions were used to assess performance. LEAP at varying levels of evidence achieves higher 
precision compared with REVEL, although REVEL achieves somewhat higher recall. The addition 
of population frequency and patient information improves precision and recall for LEAP. 

Genes with fewer than 5 pathogenic (P/LP) variants detected were excluded from this figure.


